loading
본문 바로가기 메뉴 바로가기
[논문 리뷰] EfficientNet 간단하게 리뷰하기!

지금까지 AlexNet, VGGNet, ResNet, DenseNet을 리뷰해봤다. 모델의 성능을 올리기위해 개선했던 방향은 여러가지가 있지만 크게 Layer의 Depth를 깊게하거나 각 Layer의 width(feature 수)를 크게 하거나 Resolution을 높이는 방향으로 전개되었다. efficientnet은 3가지 조건에 대한 적절한 비율을 찾아내어 적은 epoch으로 높은 성능을 보여주는 이름 그대로의 효율적이면서 높은 성능을 보여주었다. 그래서 이번에는 EfficientNet 논문을 리뷰해보려고 한다. 1. Abstract 이 논문은 model scaling과 Depth, width, resolution의 적절한 비율을 통해 더 좋은 성능을 이끌어낼 수 있음을 연구했다. 그래서 효율적인 c..

AI 2022. 8. 2. 23:50
[Loss Function] Cross Entropy에 대해 간단하게 알아보자!

실생활문제를 해결하기위해 머신러닝, 딥러닝 모델이 많이 활용되고 있다. 이번 글에서는 분류(Classification)문제에서 자주사용되는 Loss Function인 Cross Entropy에 대해서 알아보려고 한다. 먼저 알아야될 개념인 정보량과 엔트로피에 대해서 간단하게 알아보자 1. 정보량 $H = -\log p(x)$로 구할 수 있으며 여기서 $p(x)$ 는 어떤 사건 $x$의 확률을 의미한다. 예를 들어 이해해보자 '해가 동쪽에서 뜬다'라는 사건에 대해서 지구의 공전, 자전 등이 바뀌지 않는 이상 확률값은 1이다. 따라서 $H = 0$ 이다. 합리적이다. why? 너무나 당연한거라 우리가 얻을 정보가 없기 때문이다. '내일 서울에 비가 온다.'라는 사건에 대해서 우리가 확률 값을 계산할 수 있다..

AI 2022. 7. 31. 16:35
[논문 구현] PyTorch로 DenseNet 간단하게 구현해보기!

논문을 바탕으로 간단하게 구현해보자! 1. Setup import numpy as np import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch.optim as optim import time import random import torch.backends.cudnn as cudnn seed = 2022 torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) c..

AI 2022. 7. 31. 02:49
[Linear Algebra] Eigenvalue 간단하게 알아보기 2편!!

고윳값(Eigenvalues), 고유벡터(Eigenvectors)를 구하는 방법에 대해서 알아보자 다음은 동치관계이다. 1. $\lambda$ : 행렬 $A$의 고윳값 2. $A-\lambda I$ 는 singular 3. $\det{(A-\lambda I)} = 0 $ : eigenvalues를 구하기위한 equation으로 특성다항식('characteristic polynomial')이라 부르며 오직 $\lambda$ 에 대한 식이다. 이를 바탕으로 각 $\lambda$에 대해서 $(A-\lambda I)x = 0 $을 풀어서 eigenvector $x$를 구하면 된다. 예제를 통해 확인해보자 singular $ A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$..

수학/선형대수학 2022. 7. 30. 19:40
[Linear Algebra] AI와 선형대수를 공부한다면 당연히 알아야 할 Eigenvalue!! 1편

AI를 공부하면서 선형대수를 공부할 때 반드시 알아야하는 Singular Value Decomposition(SVD)를 알려면 고윳값, 고유벡터에 대해서도 알아야한다. 이에 대해 간단하게 알아보자! 이번 글에서는 아래 내용에 대해서 정리할 예정이다. - 고유벡터(Eigenvector) $x$가 어떤 line Ax 위에 있다는 것은 $Ax = \lambda x$ 를 만족한다는 의미이며 이때 $\lambda$를 고윳값(Eigenvalue)이라 부른다. - 만약 $Ax = \lambda x$를 만족하면, $A^{2}x = \lambda^{2}x $, $ A^{-1}x = \lambda^{-1}x $, $ (A + cI)x = (\lambda + c)x$ 를 만족하며 모두 같은 벡터 $x$를 의미한다. - 만약..

수학/선형대수학 2022. 7. 28. 16:05
[논문 리뷰] VGGNet을 간단하게 리뷰해보자

ImageNet에서 분류대회 기준 2위를 한 모델로 AlexNet보다 더 깊은 layer를 쌓으면서 간단한 구조로 설계되어 지금까지도 자주 사용되는 모델이다. CNN 모델에서 중요한 모델 중 하나인 만큼 간단하게 리뷰해보자! 1. Abstract Convolutional Network depth에 대한 연구를 진행했으며 3x3 Conv를 활용해 더 깊은 depth의 Network를 설계하여 이전 SOTA모델 보다 높은 성능의 Performance를 보여주었다.(16-19 layers) 다른 데이터셋에서도 일반적인 퍼포먼스를 보여줬으며, 컴퓨터 비전의 많은 연구에서 이용할 수 있도록 만들었다. (특히 U-Net 같은 Semantic Segmentation 모델의 backbone) 2. Intro 컴퓨터 비..

AI 2022. 7. 27. 21:02
이전 1 ··· 9 10 11 12 13 14 다음
이전 다음

티스토리툴바

이메일: rlarlxo4828@naver.com | 운영자 : Kim Ki Tae
제작 : 아로스
Copyrights © 2022 All Rights Reserved by (주)아백.

※ 해당 웹사이트는 정보 전달을 목적으로 운영하고 있으며, 금융 상품 판매 및 중개의 목적이 아닌 정보만 전달합니다. 또한, 어떠한 지적재산권 또한 침해하지 않고 있음을 명시합니다. 조회, 신청 및 다운로드와 같은 편의 서비스에 관한 내용은 관련 처리기관 홈페이지를 참고하시기 바랍니다.