
지금까지 AlexNet, VGGNet, ResNet, DenseNet을 리뷰해봤다. 모델의 성능을 올리기위해 개선했던 방향은 여러가지가 있지만 크게 Layer의 Depth를 깊게하거나 각 Layer의 width(feature 수)를 크게 하거나 Resolution을 높이는 방향으로 전개되었다. efficientnet은 3가지 조건에 대한 적절한 비율을 찾아내어 적은 epoch으로 높은 성능을 보여주는 이름 그대로의 효율적이면서 높은 성능을 보여주었다. 그래서 이번에는 EfficientNet 논문을 리뷰해보려고 한다. 1. Abstract 이 논문은 model scaling과 Depth, width, resolution의 적절한 비율을 통해 더 좋은 성능을 이끌어낼 수 있음을 연구했다. 그래서 효율적인 c..
AI
2022. 8. 2. 23:50