[Linear Algebra] Eigenvalue 간단하게 알아보기 2편!!
고윳값(Eigenvalues), 고유벡터(Eigenvectors)를 구하는 방법에 대해서 알아보자 다음은 동치관계이다. 1. $\lambda$ : 행렬 $A$의 고윳값 2. $A-\lambda I$ 는 singular 3. $\det{(A-\lambda I)} = 0 $ : eigenvalues를 구하기위한 equation으로 특성다항식('characteristic polynomial')이라 부르며 오직 $\lambda$ 에 대한 식이다. 이를 바탕으로 각 $\lambda$에 대해서 $(A-\lambda I)x = 0 $을 풀어서 eigenvector $x$를 구하면 된다. 예제를 통해 확인해보자 singular $ A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$..
수학/선형대수학
2022. 7. 30. 19:40