loading
본문 바로가기 메뉴 바로가기
[논문 리뷰] VGGNet을 간단하게 리뷰해보자

ImageNet에서 분류대회 기준 2위를 한 모델로 AlexNet보다 더 깊은 layer를 쌓으면서 간단한 구조로 설계되어 지금까지도 자주 사용되는 모델이다. CNN 모델에서 중요한 모델 중 하나인 만큼 간단하게 리뷰해보자! 1. Abstract Convolutional Network depth에 대한 연구를 진행했으며 3x3 Conv를 활용해 더 깊은 depth의 Network를 설계하여 이전 SOTA모델 보다 높은 성능의 Performance를 보여주었다.(16-19 layers) 다른 데이터셋에서도 일반적인 퍼포먼스를 보여줬으며, 컴퓨터 비전의 많은 연구에서 이용할 수 있도록 만들었다. (특히 U-Net 같은 Semantic Segmentation 모델의 backbone) 2. Intro 컴퓨터 비..

AI 2022. 7. 27. 21:02
[논문 구현] VGGNet 간단하게 구현해보기!!

AlexNet 보다 더 깊은 16 / 19 Layer까지 쌓은 Network로 그 이상 쌓는 경우 Saturation에 의해 더 깊게 쌓는 것이 무의미한 실험결과를 논문에서는 언급하고 있으며, 비교적 간단한 구조로 높은 성능을 내어 아직까지 자주 사용되는 모델이다. 각 Block 마다 Maxpool이 추가되어 있어 적은 Tuning으로 U-net 구조의 Feature Extractor로 사용되기도 한다. 1. Setup import torch.nn as nn import torch import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch.optim as o..

AI 2022. 7. 26. 00:06
이전 1 다음
이전 다음

티스토리툴바

이메일: rlarlxo4828@naver.com | 운영자 : Kim Ki Tae
제작 : 아로스
Copyrights © 2022 All Rights Reserved by (주)아백.

※ 해당 웹사이트는 정보 전달을 목적으로 운영하고 있으며, 금융 상품 판매 및 중개의 목적이 아닌 정보만 전달합니다. 또한, 어떠한 지적재산권 또한 침해하지 않고 있음을 명시합니다. 조회, 신청 및 다운로드와 같은 편의 서비스에 관한 내용은 관련 처리기관 홈페이지를 참고하시기 바랍니다.