loading
본문 바로가기 메뉴 바로가기
[Linear Algebra] AI와 선형대수를 공부한다면 당연히 알아야 할 Eigenvalue!! 1편

AI를 공부하면서 선형대수를 공부할 때 반드시 알아야하는 Singular Value Decomposition(SVD)를 알려면 고윳값, 고유벡터에 대해서도 알아야한다. 이에 대해 간단하게 알아보자! 이번 글에서는 아래 내용에 대해서 정리할 예정이다. - 고유벡터(Eigenvector) $x$가 어떤 line Ax 위에 있다는 것은 $Ax = \lambda x$ 를 만족한다는 의미이며 이때 $\lambda$를 고윳값(Eigenvalue)이라 부른다. - 만약 $Ax = \lambda x$를 만족하면, $A^{2}x = \lambda^{2}x $, $ A^{-1}x = \lambda^{-1}x $, $ (A + cI)x = (\lambda + c)x$ 를 만족하며 모두 같은 벡터 $x$를 의미한다. - 만약..

수학/선형대수학 2022. 7. 28. 16:05
이전 1 다음
이전 다음

티스토리툴바

이메일: rlarlxo4828@naver.com | 운영자 : Kim Ki Tae
제작 : 아로스
Copyrights © 2022 All Rights Reserved by (주)아백.

※ 해당 웹사이트는 정보 전달을 목적으로 운영하고 있으며, 금융 상품 판매 및 중개의 목적이 아닌 정보만 전달합니다. 또한, 어떠한 지적재산권 또한 침해하지 않고 있음을 명시합니다. 조회, 신청 및 다운로드와 같은 편의 서비스에 관한 내용은 관련 처리기관 홈페이지를 참고하시기 바랍니다.