
핵심아이디어는 SENet에서 나왔던 channel-wise response를 계산하여 이를 적용하는 것과 ReLU6에 H-Swish(HardSwish) 이다. 1. H-Swish $$ Swish(x) = x \sigma (x) $$ 로 표현되며 기존 ReLU에서 음수값에 대한 정보손실 문제를 해결하기 위한 함수이다. 하지만 Sigmoid 자체가 연산량이 크기 때문에 V3에서는 이를 줄이기 위해 Approximation을 한 함수를 제안한다. $$ H-Swish (x) = x \frac{ReLU6(x+3)}{6} $$ 이는 Swish를 잘 approximation 하고, 연산량도 줄어들어 mobile network에 필요한 연산량을 줄이는 방향과 부합한 방법이다. 2. V3 Unit 위의 그림처럼 ReLU..
AI
2022. 8. 27. 18:55